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of 10-MHz repetition rate. Low ringing levels and high balances beAn Inverse Technique to Evaluate Permittivity of Material

tween the positive and negative parts of the monocycle pulses have also in a Cavity

been achieved without any circuit tuning. The developed circuits are

simple and completely uniplanar and, hence, are attractive for compact Kailash P. Thakur and Wayne S Holmes
low-cost time-domain microwave systems such as subsurface sensing

radar.

Abstract—A numerical technique to estimate the dielectric constant and

loss factor of a homogeneous dielectric material placed in an arbitrary

ACKNOWLEDGMENT shaped cavity has been developed. The values 8fparameters are mea-
ed experimentally by placing the sample in the cavity. Starting with a
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mental resonance frequency. The FEM routine is run several times while
optimizing the values of dielectric constant and conductivity of the sample.
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The measurement of the dielectric constant and loss factor of a ma-
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of dielectric, where there is restriction upon the sample size and its
alignment in the waveguide cell; and 3) by using the cavity resonance.

In the third group of techniques, the shiftin the resonance pea®and
values of the cavity with and without the sample generate the values of
dielectric constant and loss factor of the sample using the perturbation
method. However, there are limitations for the use of the perturbation
method. The sample size should be very small compared to the dimen-
sion of the cavity so that the electric field inside the cavity does not
change much due to the presence of the sample. In a large number of
applications it is not always possible to have a sample of acceptable di-
mensions. For example, if we intend to measure the dielectric constant
of an apple, it will not be a good idea to use the perturbation technique.

This paper presents the development of a numerical simulation tech-
nigue to obtain the complex permittivity (dielectric constant and loss
factor) of a dielectric material of an arbitrary shape placed in an arbi-
trary-shaped cavity by using the finite-element method (FEM). The ex-
perimental values aof-parameters around the fundamental resonance
frequency are matched with the simulated data.

Il. PROCEDURE

In principle, the geometry of the cavity and dimensions of the sample
within the cavity has no restriction as long as the entire volume can be
divided into discrete elements acceptable by the FEM routine. How-
ever, a simple rectangular geometry has been considered here for the
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—&—Real I1l. ERROR MINIMIZATION

The computational steps involved in obtaining the unknown com-
plex permittivity of dielectric sample in the cavity are shown in Fig. 2.
The forward computations are carried out to obtéin for the cavity
loaded with the dielectric sample of same size, but having known values
of complex permittivity. The objective here is to match the computed
and experimental values of e, parameter at all measured frequency
-0.025 . ‘ < around the resonance peak. In order to matchbtheparameters and,
1430 1468 1506 1544 1582 1620 hence, obtain the complex permittivity of the sample, we start with an
initial trial value of complex permittivity, get the final FEM results,
and compute the error with respect to the experimental data. Repeat
Fig. 1. Real and imaginary components%f for the cavity loaded with the the process for some different values of _comp_le).( pe.rmit.tivity and C.om-
dielectric sample. pute the error again. The process of this optimization is done using a

restricted Monte Carlo simulation. From the knowledge of the nature
of dependence of error upon permittivity of the material, the restriction
sake of simplicity. A rectangular cavity of 15 cm12 cmx 9 cm has upon the next iteration is imposed so that the search is carried out in
been used. The sample is also arectangular slab 2 8mmx 3c¢m),  the right direction.
placed atthe center of the cavity. In this paper, the measurement procesgowever, the problem here is how accurately one can obtain the lo-
has been simulated by using the direct FEM solution for the samplecition of the resonance peak and its height from the available data at a
known complex permittivity (dielectric constaat = 3.709709 and  discrete frequency. Using different extrapolation techniques generates
conductivitye = 0.144941 S/m) in the frequency range from 1430 togifferent results, which restrict the accuracy of the prediction process.
1620 MHz at the frequency step of 10 MHz. We have used a three-flioreover, there is limitation of FEM computations upon the termi-
mensional (3-D) vector FEM method [8], [9] using the complex numhation of iterative computations of roots using the complex biconju-
bers and the complex biconjugate gradient method [10] for the solutigate gradient method, which can be terminated if the error is less than
of the 3-D wave equation some tolerance error and yields different errors at different frequencies.
This makes some results more accurate than the other. In this paper,
v x { 1 v x E(,")} — K2 E(r) = —jkoZod (1) 1) eight different measures of errofi(—-«s) betvyeen the experimental
Hor and computed values &f-parameters are estimated as follows:

Frequency (MHz)

wheree, is the complex permittivity of material inside the cavity and

the other terms have their usual significance [8]. The electric figle) £ = (FF;FC)
within an elementary discretized tetrahedral element can be written as (521;_ Sare)
g =———(F—
6 Szle
E(r)= Erwe(r 2 - _(FL@ _ FLU)
(r) ,; (r) 2 oy =Pl P
. . . . P (Qr - Qf‘«)
wherew, () are the weighing functions taken equal to the basis func- =4 - 0.
tions in Galerkin’s formulism, and,, are complex coefficients. The (FR. — FR.)
representation of the whole problem in the matrix form can be ob- 2 :FiRg
tained by multiplying (1) byw, (r) and integrating over the elementary (So1re — Sorre)
volume and using (2) as follows: €6 = 3
21Re
__(FP.-FP.)
[4] [E] = [B] 3) =
where SR St ) 1 4c) (6)
A= / [L <V X w,;(r)) : <V x 'urj('r)) where _ _
Hr F. andF. experimental and computed frequencies of the
maximum absolute value of real component of
—jkoZoerw;(r) - 'w]-('r):| dv (4) Sa21, respectively;
Sa1. andSzi.  experimental and computed values of the max-
imum absolute value of the real component of
and Sa1, respectively;
- FL.andFL. experimental and computed values of resonance
B = /Ji(r) “w;(r)dS. (5) frequency forS.,, obtained from Lorenz curve
fitting, respectively;

When a dielectric sample is placed in the cavity, the mattjxn (3) Q. andQ. experimental and computed values@ffor S,
splits up into two matrices corresponding to two different sets of com- obtained from Lorentz curve fitting, respectively;
plex permittivities. The electric field around the input port is known FR. andFR. experimental and computed values of resonance
and, thus, are some components of complex vegédin (3). There- frequency ofS,; obtained from simple quadratic
fore, all unknown field elements of (3) can be obtained. The simulated regression of five data points around the peak,

measurement results for the loaded cavity is shown in Fig. 1. respectively;
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Initial values (n =0)
Choose ¢, '(0) and ¢,”(0)

|

n=n+1
Perform Monte Carlo simulation

A 4

Restiction:
sgnl =+1or-1 £(m) =g ‘(m)[1 +sgnl.oy]; O<oy <1
sgn2=+1or-1 e’(n) =g " (m)[1 +sgn2.00.]; 0 <oy <1

depending upon errors

T 1

perform FEM and compute S, in range of
frequencies around resonance

A

compute error between computed and
experimental values of S-parameter

Check errors

Errors consistently
low

Update:
g (n+l) =€ ‘(n)

Error < Tolerance
g (n+1)=¢"(n)

Stop
Fig. 2. Procedure for coupling the FEM and restricted Monte Carlo technique.
So11e and experimental and computed values of the height ——Run2 —&—Runl
S21 Re of the resonance peak obtained from simple
guadratic regression of five data points around 50 A
the peak, respectively; g
FP.andFP. experimental and computed values of frequency 2 40 1
at which there is an abrupt change of phase( S 30 4
around the resonance peak%f , respectively; .2
A. andA. experimental and computed values of the area in- E 20 -
tercepted byS,; on the frequency axis, respec- B
tively. 2 10 -
These errors fall into two groups: Eyrl = ¢4 43425 +¢7 and 2) SesacBer
Err2 = =5 424 426 +25. Inthe present simulation technique, all eight 0 w . . i i i
errors are minimized simultaneously. If errors of the same group differ 0 4 3 12 16 20 24 28

considerably from each other (one positive and the other negative), the
current results are discarded and the next iteration proceeds with the

earlier data. The convergence is very fast and depends upon the initigl 3. Convergence of the simulation processes for two different runs for
values of the complex permittivity. dielectric constant.

No of iterations
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No of iterations A Full-Wave Modal Analysis of Inhomogeneous Waveguide

Fig. 4. Convergence of the simulation processes for two different runs for DlsconthItleS.WIth Both Plana.r and Circular
conductivityo. Cylindrical Boundaries

Robert H. MacPhie and Ke-Li Wu
Several runs were made and the results of the convergence of two
runs are shown in Figs. 3 and 4. After the convergence is reached, the
simulated curve fo»; matched exactly with the experimental one of Abstract—A full-wave analysis of an inhomogeneous waveguide region

; e : . ith both planar and circular cylindrical boundaries is presented in this
Fig. 1, and the permittivity of the sample is reproduced with an acc aper. Circular cylindrical modal functions are used to represent the fields.

racy of 0.01%. Field matching on the planar walls and apertures is rigorously achieved by
the finite plane-wave series expansion of each modal field, whereas the ad-
dition theorem for cylindrical waves is used for rigorous field matching on
IV. CONCLUSION the circular cylindrical boundaries. Numerical results are given for rectan-
gular waveguides with 9¢ bends and rounded outer corners.
Based upon the FEM and a cavity resonance technique, an iterative . .
. . e . Index Terms—Full-wave modal analysis, inhomogeneous waveguide
method for exact estimation of complex permittivity of an arbitrary,  rions.
shaped dielectric has been presented. The measurements are done in a
frequency band around any resonance peak, preferably the fundamental

one. This paper also defined a number of error parameters used in the |. INTRODUCTION
process of optimization. The tephniqu_e can be ‘mp'em‘?r‘_ted very easiI){n a recent paper [1], MacPhie and Wu provided a full-wave modal
on a desktop computer for a quick estimation of permittivity of Sampkf’aﬁwalysis of waveguide discontinuities with piecewise planar bound-

on the production line. aries. Practical examples of such discontinuities are T-, Y-junctions
and E- and H -plane mitered 90bends. In this paper, this technique

is extended to discontinuities with both planar and circular cylindrical
boundaries. Such an inhomogeneous waveguide discontinuity is shown
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Bessel-Fourier modal functions are used to represent the M- (
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