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of 10-MHz repetition rate. Low ringing levels and high balances be-
tween the positive and negative parts of the monocycle pulses have also
been achieved without any circuit tuning. The developed circuits are
simple and completely uniplanar and, hence, are attractive for compact
low-cost time-domain microwave systems such as subsurface sensing
radar.
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An Inverse Technique to Evaluate Permittivity of Material
in a Cavity

Kailash P. Thakur and Wayne S Holmes

Abstract—A numerical technique to estimate the dielectric constant and
loss factor of a homogeneous dielectric material placed in an arbitrary
shaped cavity has been developed. The values of-parameters are mea-
sured experimentally by placing the sample in the cavity. Starting with a
trial set of permittivity values, the computation is carried out using the fi-
nite-element method (FEM) to match the -parameters around the funda-
mental resonance frequency. The FEM routine is run several times while
optimizing the values of dielectric constant and conductivity of the sample.
During the process of optimization, eight different measures of error be-
tween computed and experimental values of complex -parameters are
examined. It is found that there is no single measure of error, which can
be minimized to estimate two parameters (dielectric constant and the loss
factor), but the combination of errors has to be minimized to get the exact
solution. The computer program can generate the solution with an accu-
racy of less than 0.01% in a few hours on a pentium-based personal com-
puter.

Index Terms—Cavity resonance, dielectric constant, FEM, inverse
problem, Monte Carlo simulation.

I. INTRODUCTION

The measurement of the dielectric constant and loss factor of a ma-
terial plays an important role in microwave technology. There are sev-
eral techniques developed for an accurate measurement of permittivity
of the material [1]–[7]. The measurement technique at microwave fre-
quencies can be classified in three groups: 1) by using some probe or
microwave sensor; 2) by using a waveguide cell filled with the sample
of dielectric, where there is restriction upon the sample size and its
alignment in the waveguide cell; and 3) by using the cavity resonance.

In the third group of techniques, the shift in the resonance peak andQ

values of the cavity with and without the sample generate the values of
dielectric constant and loss factor of the sample using the perturbation
method. However, there are limitations for the use of the perturbation
method. The sample size should be very small compared to the dimen-
sion of the cavity so that the electric field inside the cavity does not
change much due to the presence of the sample. In a large number of
applications it is not always possible to have a sample of acceptable di-
mensions. For example, if we intend to measure the dielectric constant
of an apple, it will not be a good idea to use the perturbation technique.

This paper presents the development of a numerical simulation tech-
nique to obtain the complex permittivity (dielectric constant and loss
factor) of a dielectric material of an arbitrary shape placed in an arbi-
trary-shaped cavity by using the finite-element method (FEM). The ex-
perimental values ofS-parameters around the fundamental resonance
frequency are matched with the simulated data.

II. PROCEDURE

In principle, the geometry of the cavity and dimensions of the sample
within the cavity has no restriction as long as the entire volume can be
divided into discrete elements acceptable by the FEM routine. How-
ever, a simple rectangular geometry has been considered here for the
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Fig. 1. Real and imaginary components ofS for the cavity loaded with the
dielectric sample.

sake of simplicity. A rectangular cavity of 15 cm� 12 cm� 9 cm has
been used. The sample is also a rectangular slab (2 cm� 3 cm� 3 cm),
placed at the center of the cavity. In this paper, the measurement process
has been simulated by using the direct FEM solution for the sample of
known complex permittivity (dielectric constant�r = 3:709709 and
conductivity� = 0:144941 S/m) in the frequency range from 1430 to
1620 MHz at the frequency step of 10 MHz. We have used a three-di-
mensional (3-D) vector FEM method [8], [9] using the complex num-
bers and the complex biconjugate gradient method [10] for the solution
of the 3-D wave equation

r�
1

�r
r� E(r) � k

2

o�rE(r) = �jkoZoJ(r) (1)

where�r is the complex permittivity of material inside the cavity and
the other terms have their usual significance [8]. The electric fieldE(r)
within an elementary discretized tetrahedral element can be written as

E(r) =

6

k=1

Ekwk(r) (2)

wherewk(r) are the weighing functions taken equal to the basis func-
tions in Galerkin’s formulism, andEk are complex coefficients. The
representation of the whole problem in the matrix form can be ob-
tained by multiplying (1) bywk(r) and integrating over the elementary
volume and using (2) as follows:

[A] [E] = [B] (3)

where

Aij =
1

�r
r� wi(r) � r � wj(r)

�jkoZo�rwi(r) � wj(r) dv (4)

and

Bi = Ji(r) � wi(r)dS: (5)

When a dielectric sample is placed in the cavity, the matrix[A] in (3)
splits up into two matrices corresponding to two different sets of com-
plex permittivities. The electric field around the input port is known
and, thus, are some components of complex vector[E] in (3). There-
fore, all unknown field elements of (3) can be obtained. The simulated
measurement results for the loaded cavity is shown in Fig. 1.

III. ERRORMINIMIZATION

The computational steps involved in obtaining the unknown com-
plex permittivity of dielectric sample in the cavity are shown in Fig. 2.
The forward computations are carried out to obtainS21 for the cavity
loaded with the dielectric sample of same size, but having known values
of complex permittivity. The objective here is to match the computed
and experimental values of theS21 parameter at all measured frequency
around the resonance peak. In order to match theS21 parameters and,
hence, obtain the complex permittivity of the sample, we start with an
initial trial value of complex permittivity, get the final FEM results,
and compute the error with respect to the experimental data. Repeat
the process for some different values of complex permittivity and com-
pute the error again. The process of this optimization is done using a
restricted Monte Carlo simulation. From the knowledge of the nature
of dependence of error upon permittivity of the material, the restriction
upon the next iteration is imposed so that the search is carried out in
the right direction.

However, the problem here is how accurately one can obtain the lo-
cation of the resonance peak and its height from the available data at a
discrete frequency. Using different extrapolation techniques generates
different results, which restrict the accuracy of the prediction process.
Moreover, there is limitation of FEM computations upon the termi-
nation of iterative computations of roots using the complex biconju-
gate gradient method, which can be terminated if the error is less than
some tolerance error and yields different errors at different frequencies.
This makes some results more accurate than the other. In this paper,
eight different measures of error ("1—"8) between the experimental
and computed values ofS-parameters are estimated as follows:

"1 =
(Fe � Fc)

Fe

"2 =
(S21e � S21c)

S21e

"3 =
(FLe � FLc)

FLe

"4 =
(Qe �Qc)

Qe

"5 =
(FRe � FRc)

FRe

"6 =
(S21Re � S21Rc)

S21Re

"7 =
(FPe � FPc)

FPe

"8 =
(Ae � Ac)

Ae

(6)

where
Fe andFc experimental and computed frequencies of the

maximum absolute value of real component of
S21, respectively;

S21e andS21c experimental and computed values of the max-
imum absolute value of the real component of
S21, respectively;

FLe andFLc experimental and computed values of resonance
frequency forS21, obtained from Lorenz curve
fitting, respectively;

Qe andQc experimental and computed values ofQ for S21
obtained from Lorentz curve fitting, respectively;

FRe andFRc experimental and computed values of resonance
frequency ofS21 obtained from simple quadratic
regression of five data points around the peak,
respectively;
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Fig. 2. Procedure for coupling the FEM and restricted Monte Carlo technique.

S21Re and
S21Rc

experimental and computed values of the height
of the resonance peak obtained from simple
quadratic regression of five data points around
the peak, respectively;

FPe andFPc experimental and computed values of frequency
at which there is an abrupt change of phase (= �)
around the resonance peak ofS21, respectively;

Ae andAc experimental and computed values of the area in-
tercepted byS21 on the frequency axis, respec-
tively.

These errors fall into two groups: 1)Err1 = "1+"3+"5+"7 and 2)
Err2 = "2+"4+"6+"8. In the present simulation technique, all eight
errors are minimized simultaneously. If errors of the same group differ
considerably from each other (one positive and the other negative), the
current results are discarded and the next iteration proceeds with the
earlier data. The convergence is very fast and depends upon the initial
values of the complex permittivity.

Fig. 3. Convergence of the simulation processes for two different runs for
dielectric constant.
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Fig. 4. Convergence of the simulation processes for two different runs for
conductivity�.

Several runs were made and the results of the convergence of two
runs are shown in Figs. 3 and 4. After the convergence is reached, the
simulated curve forS21 matched exactly with the experimental one of
Fig. 1, and the permittivity of the sample is reproduced with an accu-
racy of 0.01%.

IV. CONCLUSION

Based upon the FEM and a cavity resonance technique, an iterative
method for exact estimation of complex permittivity of an arbitrary
shaped dielectric has been presented. The measurements are done in a
frequency band around any resonance peak, preferably the fundamental
one. This paper also defined a number of error parameters used in the
process of optimization. The technique can be implemented very easily
on a desktop computer for a quick estimation of permittivity of samples
on the production line.
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A Full-Wave Modal Analysis of Inhomogeneous Waveguide
Discontinuities with Both Planar and Circular

Cylindrical Boundaries

Robert H. MacPhie and Ke-Li Wu

Abstract—A full-wave analysis of an inhomogeneous waveguide region
with both planar and circular cylindrical boundaries is presented in this
paper. Circular cylindrical modal functions are used to represent the fields.
Field matching on the planar walls and apertures is rigorously achieved by
the finite plane-wave series expansion of each modal field, whereas the ad-
dition theorem for cylindrical waves is used for rigorous field matching on
the circular cylindrical boundaries. Numerical results are given for rectan-
gular waveguides with 90 bends and rounded outer corners.

Index Terms—Full-wave modal analysis, inhomogeneous waveguide
functions.

I. INTRODUCTION

In a recent paper [1], MacPhie and Wu provided a full-wave modal
analysis of waveguide discontinuities with piecewise planar bound-
aries. Practical examples of such discontinuities are T-, Y-junctions
andE- andH-plane mitered 90� bends. In this paper, this technique
is extended to discontinuities with both planar and circular cylindrical
boundaries. Such an inhomogeneous waveguide discontinuity is shown
in Fig. 1, where there are two feeding waveguides, four planar side-
walls, and two circular cylindrical sidewalls. As in [1], the height of
the region isw with bottom and top walls atz = 0 andz = w, respec-
tively.

Bessel–Fourier modal functions are used to represent the TM- (e)
and TE-type (h) fields in the inhomogeneous region [1], [2]. For field
matching in the planar waveguide aperturesAn and on the planar
sidewallsWm, the finite plane-wave series expansion [1] is employed.
However, on the circular cylindrical wallsCl, a rigorous solution is
obtained by means of the translation addition theorem [3] for circular
cylindrical wave functions. The proposed formula is verified by the
comparison of the numerical results obtained by the finite-element
method (FEM) and those of the proposed modal analysis for WR75
waveguide 90� bends (bothH- andE-planes) having rounded outer
corners.
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